Supersense Tagging of Unknown Nouns Using Semantic Similarity

نویسنده

  • James R. Curran
چکیده

The limited coverage of lexical-semantic resources is a significant problem for NLP systems which can be alleviated by automatically classifying the unknown words. Supersense tagging assigns unknown nouns one of 26 broad semantic categories used by lexicographers to organise their manual insertion into WORDNET. Ciaramita and Johnson (2003) present a tagger which uses synonym set glosses as annotated training examples. We describe an unsupervised approach, based on vector-space similarity, which does not require annotated examples but significantly outperforms their tagger. We also demonstrate the use of an extremely large shallow-parsed corpus for calculating vector-space semantic similarity.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Multi-phase Semi-supersense Tagging of Korean Unknown Nouns

Supersense tagging is a problem of finding a corresponding semantic super tag (eg. Phenomenon, Act) based on syntactic information and annotated corpora. However, we employ semantic information rather than syntactic one and annotated corpora, because Korean language has relatively flexible syntactic structure and is lack of annotated corpora. To construct the automatic sense tagging system for ...

متن کامل

UFRGS&LIF at SemEval-2016 Task 10: Rule-Based MWE Identification and Predominant-Supersense Tagging

This paper presents our approach towards the SemEval-2016 Task 10 – Detecting Minimal Semantic Units and their Meanings. Systems are expected to provide a representation of lexical semantics by (1) segmenting tokens into words and multiword units and (2) providing a supersense tag for segments that function as nouns or verbs. Our pipeline rule-based system uses no external resources and was imp...

متن کامل

Supersense Tagging of Unknown Nouns in WordNet

We present a new framework for classifying common nouns that extends namedentity classification. We used a fixed set of 26 semantic labels, which we called supersenses. These are the labels used by lexicographers developing WordNet. This framework has a number of practical advantages. We show how information contained in the dictionary can be used as additional training data that improves accur...

متن کامل

Description and Results of the SuperSense Tagging Task

SuperSense tagging (SST) is a Natural Language Processing task that consists in annotating each significant entity in a text, like nouns, verbs, adjectives and adverbs, within a general semantic taxonomy defined by the WordNet lexicographer classes (called SuperSenses). SST can be considered as a task half-way between Named-Entity Recognition (NER) and Word Sense Disambiguation (WSD): it is an ...

متن کامل

Developing a Semantic Similarity Judgment Test for Persian Action Verbs and Non-action Nouns in Patients With Brain Injury and Determining its Content Validity

Objective: Brain trauma evidences suggest that the two grammatical categories of noun and verb are processed in different regions of the brain due to differences in the complexity of grammatical and semantic information processing. Studies have shown that the verbs belonging to different semantic categories lead to neural activity in different areas of the brain, and action verb processing is r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005